Una imagen digital es una matriz de dos dimensiones (filas y columnas). Cada elemento de la matriz representa un color. Cada elemento es llamado píxel. Este nombre viene de la contracción de las palabras en inglés picture element (elemento de imagen).
píxel=picture element
Nota. Este tipo de contracciones son llamadas portmanteaus. Otros ejemplos son: emoticon, internet, billón, wikipedia, etc.
De esta forma, una imágen está compuesta de píxeles (ojo...se acentúa la i).
La resolución de una imágen digital (tamaño) es la cantidad de píxeles que hay en una imágen. Así, podemos encontrar imágenes de 256 × 256, 640 × 480, 1024 × 768 píxeles, etc. Aquí, la resolución está dada por las filas y columnas de la imagen. Otra forma de expresar la resolución de la imágen es utilizando la cantidad explicita de píxeles en la imágen (multiplicando filas con columnas) en millones de píxeles o megapíxeles (Mpx). De esta forma, existen imágenes de 1 megapíxel, 2 megapíxeles,...,3.1 megapíxeles, etc. Por ejemplo:
Una imagen con resolución de 640 x 480 píxeles se dice que tiene 0.3 Mpx (640 × 480 = 307,200 = 0.307,200 millones de píxeles).
Una imagen con resolución de 2048 x 1536 píxeles se dice que tiene 3.1 Mpx (2048 × 1536 = 3,145,728 = 3.145,728 millones de píxeles).
Un píxel es un elemento de la imágen y cuya magnitud representa un color. Dicha magnitud es en realidad un número entero el cual puede ser representado por un número fijo de bits. El número de bits (o profundidad de la imagen) determina cuántos colores o gamas de gris pueden ser mostrados. Por ejemplo, en una imagen de 8-bits se utilizan 8 bits para cada pixel, permitiendo mostrar 2 elevado a 8 (256) colores diferentes o gamas de gris.
Siendo más específicos, la siguiente imagen (Lena) tiene una resolución de 256 × 256 píxeles y una profundidad de 8 bits en escala de grises. Es decir sólo se puede representar 256 colores, los cuales van desde el negro (magnitud 0) hasta el blanco (magnitud 255), un colo gris tendría una magnitud cercana a 128.
Un acercamiento a una porción de la imagen de Lena (su ojo izquierdo) se muestra en la siguiente figura, en ella podemos apreciar cada píxel en detalle y el valor de cada uno.
Para que un píxel represente multiples colores (y no solamente escala de grises) normalmente se utilizan más bits, generalmente 24. Esto permite tener una cantidad de 2 elevado a la 24 colores, es decir, 16,777,216 opciones de color.
Con tantos colores como saber ¿cuál es cuál?, para ello se utilizan los modelos de color. El modelo de color más utlizado es el modelo RGB, otros modelos utilizados son el CYMK, RYB, etc.
Un paréntesis. En esta página se muestran diversos modelos de color. Además se puede descargar un software muy interesante también. Se las recomiendo si quieren profundizar más al respecto.
En el modelo RGB (del inglés Red, Green, Blue; "rojo, verde, azul"), RGB para simplificar, cada color es representado mediante la mezcla por adición de esos tres colores. Por lo general cada uno de ellos tiene una profundidad de 8 bits, es decir que pueden tomar un valor entre 0 y 255 (un total de 256 colores). Con lo que se pueden obtener 256 × 256 × 256 = 16,777,216 colores.
Para indicar con qué proporción mezclamos cada color, se asigna un valor a cada uno de los colores primarios, de manera que el valor 0 significa que no interviene en la mezcla y, a medida que ese valor aumenta, se entiende que aporta más intensidad a la mezcla.
Por lo tanto, el rojo se obtiene con (255,0,0), el verde con (0,255,0) y el azul con (0,0,255), obteniendo, en cada caso un color resultante monocromático. La ausencia de color (lo que nosotros conocemos como color negro) se obtiene cuando las tres componentes son 0, (0,0,0).
La combinación de dos colores a nivel 255 con un tercero en nivel 0 da lugar a tres colores intermedios. De esta forma el amarillo es (255,255,0), el cyan (0,255,255) y el magenta (255,0,255).
Obviamente, el color blanco se forma con los tres colores primarios a su máximo nivel (255,255,255).
El conjunto de todos los colores se puede representar en forma de cubo. Cada color es un punto de la superficie o del interior de éste. La escala de grises estaría situada en la diagonal que une al color blanco con el negro.Hasta el momento hemos hablado de imágenes fijas o rasterizadas (llamadas también bitmap, imagen matricial o pixmap). Este tipo de imágenes, como se mencionó anteriormente, son representadas por una rejilla (raster) de píxeles y cuyas características principales son el tamaño y la profundidad.
Sin embargo existen otro tipo de imágenes: las imágenes vectoriales. Éstas son formadas por objetos geométricos independientes (segmentos, polígonos, arcos, etc.), cada uno de ellos definido por distintos atributos matemáticos de forma, de posición, de color, etc. Por ejemplo un círculo de color rojo quedaría definido por la posición de su centro, su radio, el grosor de línea y su color. El interés principal de los gráficos vectoriales es poder ampliar el tamaño de una imagen a voluntad sin sufrir el efecto de escalado que sufren las imágenes rasterizadas. Asimismo, permiten mover, estirar y retorcer imágenes de manera relativamente sencilla.
La imagen de la izquierda es un ejemplo en el que se pueden comparar las imágenes vectoriales (columna de la izquierda) con las imágenes rasterizadas (columna de la derecha) al ampliar las respectivas imágenes. Como se puede comprobar, a medida que aumenta el zoom las imágenes de la izquierda mantienen su calidad, mientras que los de la derecha van revelando paulatinamente los píxeles que conforman la imagen. Las imágenes vectoriales pueden ser escaladas ilimitadamente sin perder su calidad. Los dos ejemplos de ampliación al 300% y al 600% ilustran especialmente bien esta propiedad de las imágenes vectoriales: los contornos de las figuras geométricas (franjas blancas detrás de la letra A) no aumentan proporcionalmente en la figura en el caso de la imagen rasterizado.
Con esta breve introducción a imágenes digitales quedan establecidas la bases necesarias para entender el medio en donde ocultaremos información. Sólo nos queda el utilizar las técnicas para esconder información dentro de ellas. Los métodos que se tratarán en este blog utilizaran imágenes fijas.
En la siguiente entrada veremos cómo ocultar información en una imagen rasterizada utilizando la técnica LSB.
Como nota final, de ahora en adelante llamaremos a las imágenes rasterizadas simplemente como imágenes.
Que estén bien :)
imagenes en escala de grises Imágenes a color Lena Modelos de color Profundidad Píxel Resolución RGB
muy buena la información! ahora me ha quedado bastante más claro.
ResponderBorrarhttp://thundaxsoftware.blogspot.com/
Gracias Jordi, cualquier duda no dudes en preguntar
ResponderBorrar